If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2+300x-1125=0
a = 100; b = 300; c = -1125;
Δ = b2-4ac
Δ = 3002-4·100·(-1125)
Δ = 540000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540000}=\sqrt{90000*6}=\sqrt{90000}*\sqrt{6}=300\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-300\sqrt{6}}{2*100}=\frac{-300-300\sqrt{6}}{200} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+300\sqrt{6}}{2*100}=\frac{-300+300\sqrt{6}}{200} $
| 18+n=73 | | F-6=|x-2| | | F6=|x-2| | | 6x+-1=3+4x | | -2/3(3x-4)+3×=5/6 | | 5y-2y=30 | | -2(x-3)=1/2(4x-18) | | 2(3−p)−17=41 | | 50t=100(t-2) | | 180-20x+10+14x-4+50=180 | | 2(a+4)=0 | | -7x+13=3x+53 | | 540=(2n-4)90 | | 15.4+20.6=m | | x+2/x+5=4/5 | | 5(2x-5)+5=-4x+36 | | (7x-15)=(24x=9) | | (14x-23)=(9x+37 | | 2(x+-6)=3(x+9) | | (2n+6)÷2-n=3 | | -4x^2+((8.6*10^-4)x)-95.2=0 | | x+(x/10)=2995.72000000 | | 4x^2+((8.6*10^-4)x)-95.2=0 | | 2n10=30 | | 31+X=3(5xX) | | P(x)=6x+5 | | 7x-6=12-2x | | 7x-6=12+2x | | 10+4(3p+10)=18 | | 8+2x=5x-2 | | 5x=-7x+2 | | 6x-3(x-11)=3 |